Solution to the Inverse Mordell-weil Problem for Elliptic Curves
نویسنده
چکیده
In [Ro76], M. Rosen showed that for any countable commutative group G, there is a field K, an elliptic curve E/K and a surjective group homomorphism E(K) → G. From this he deduced that any countable commutative group whatsoever is the ideal class group of an elliptic Dedekind domain – the ring of all functions on an elliptic curve which are regular away from some (fixed, possibly infinite) set S of closed points of E. Rosen left open the question of whether every uncountable commutative group can be achieved as the class group of an elliptic Dedekind domain. This was answered in the affirmative in [Cl09], by showing that for any free commutative group G, there is a field K and an elliptic curve E/K such that the Mordell-Weil group E(K) is isomorphic to G.
منابع مشابه
Complete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملSelmer groups and Mordell-Weil groups of elliptic curves over towers of function fields
In [12] and [13], Silverman discusses the problem of bounding the Mordell-Weil ranks of elliptic curves over towers of function fields. We first prove generalizations of the theorems of those two papers by a different method, allowing non-abelian Galois groups and removing the dependence on Tate’s conjectures. We then prove some theorems about the growth of Mordell-Weil ranks in towers of funct...
متن کاملThree lectures on elliptic surfaces and curves of high rank
Three lectures on elliptic surfaces and curves of high rank Noam D. Elkies Over the past two years we have improved several of the (Mordell–Weil) rank records for elliptic curves over Q and nonconstant elliptic curves over Q(t). For example, we found the first example of a curve E/Q with 28 independent points P i ∈ E(Q) (the previous record was 24, by R. Martin and W. McMillen 2000), and the fi...
متن کاملHodge Theory and the Mordell-weil Rank of Elliptic Curves over Extensions of Function Fields
We use Hodge theory to prove a new upper bound on the ranks of Mordell-Weil groups for elliptic curves over function fields after regular geometrically Galois extensions of the base field, improving on previous results of Silverman and Ellenberg, when the base field has characteristic zero and the supports of the conductor of the elliptic curve and of the ramification divisor of the extension a...
متن کامل